Deep Learning for Autonomous Systems Seminar WS 2020/21

Robot Learning Lab

Albert-Ludwigs-Universität Freiburg

Friday, November 6th 2020

Procedure

http://rl.uni-freiburg.de/teaching/ws20/deeplearningforautonomoussystems

- Students should select three papers out of the list in preference order (highest first).
- Places will be assigned based on priority suggestions of HisInOne and motivation of student by Nov 25, 2020.
- Students are required to prepare a 20 minutes talk, write an abstract and a summary.
- The Seminar will be held as a virtual "Blockseminar" on Feb 5, 2021.

Procedure

- The details of presentation and slides should be discussed with the supervisor two weeks before the presentation.
- Abstract should be 2 pages long and is due on Jan 08, 2021.
- Summary is due on Feb 19, 2021 and should be max. 7 pages long (latex, a4wide, 11pt) not including the bibliography and figures. Significantly longer summaries will not be accepted.
- The final grade is based on the oral presentation, the written abstract, the summary, and participation in the blockseminar.

Deep Learning For Autonomous Systems

- Deep learning has led to impressive progress on complex, high dimensional data
 - Speech Recognition
 - Computer Vision
 - Natural Language Understanding
- Now enable autonomous systems and robots to operate in the real world

Sensors \rightarrow Perception \rightarrow World Model \rightarrow Planning \rightarrow Control \rightarrow Action

Perception

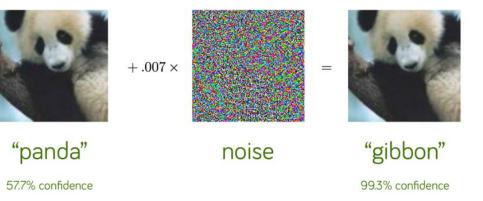
Complex environments

Noisy observations and sensors

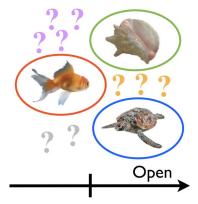
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow, Waleed et. al., 2017 Rohit Mohan and Abhinav Valada, "EfficientPS: Efficient Panoptic Segmentation", arXiv preprint arXiv:2004.02307, 2020.

Unknown, Open World

- Open Set Recognition: recognise unknowns
- Uncertainty estimation
- Adversarial attacks



Open Set Recognition



Multiple known classes, many unknown classes

Towards Open Set Recognition, Scheirer et. al., 2012

Explaining and Harnessing Adversarial Examples, Goodfellow et. al., 2014

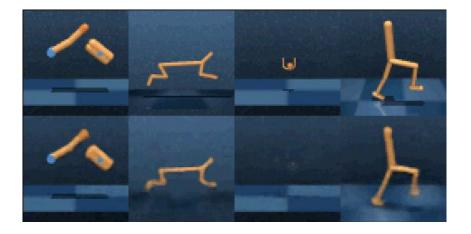
Autonomous Decision Making

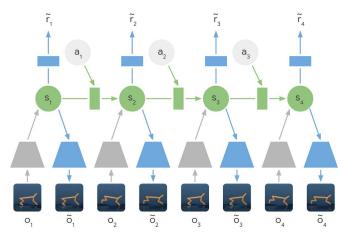
Reinforcement learning for short- and long-term decision making

Slide from Raia Hadsell

Continuous Control

- Model free RL successful on difficult continuous control domains
 - Directly optimise policy
 - Comparably data efficient on stationary tasks
- Model based RL catching up
 - Learn a world model
 - Promise of better generalisation

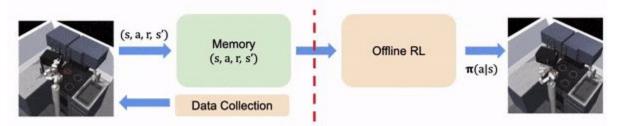




Learning Latent Dynamics for Planning from Pixels, Hafner et. al., 2019

Expensive Real World Data

- Sim2Real
 - Domain Adaptation
 - Action and dynamics noise
- Offline RL
 - Large amounts of unstructered data
 - Little annotated / expert data



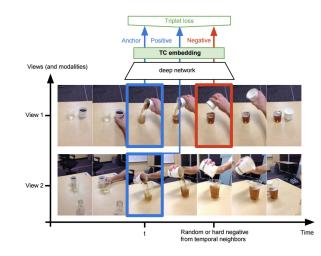
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection. Sergey Levine, Peter Pastor, Alex Krizhevsky, Deirdre Quillen

D4RL: Datasets for Deep Data-Driven Reinforcement Learning, Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, Sergey Levine

Self- and Weak-Supervision

- Pretext tasks
 - Object presence and absence
 - Consistency over time
 - Viewpoint invariance
- Reduce oversight
 - Automatic resets
 - Reward labelling

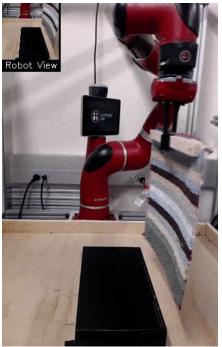
Time-Contrastive Networks: Self-Supervised Learning from Video, Sermanet et. al., 2018 TossingBot: Learning to Throw Arbitrary Objects, Zeng et. al., 2019.



Seminar Topics

Topic 1: End-to-End Robotic Reinforcement Learning without Reward Engineering

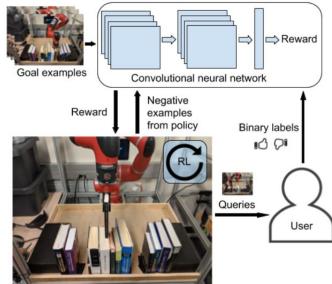
- Real-world applications of reinforcement learning must specify the goal of the task by means of a manually programmed reward function
- This work enables a robot to learn from a modest number of examples of successful outcomes, followed by active queries, where the robot shows the user a state and asks whether that state represents success.



Source: Singh et al. 2019

Topic 1: End-to-End Robotic Reinforcement Learning without Reward Engineering

- First, learn reward function based on goal images and labels specified by users.
- Then train an RL agent on a task based on this reward function. To avoid undesired behaviours the robot periodically queries the user to provide labels for images.



Source: Singh et al. 2019

Topic 2: Learning quadrupedal locomotion over challenging terrain

- Quadrupedal locomotion is in princip very powerful. But achieving the generality and robustness of animal locomotion across diverse environments is very challenging.
- Goal: learn robust locomotion across very challenging terrains.

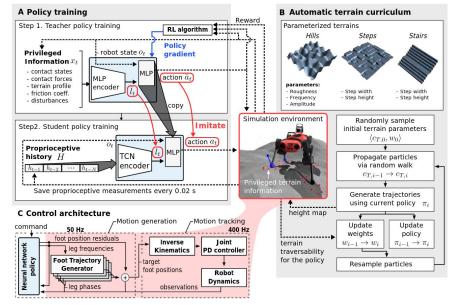


Source: Lee et al. 2020

Supervisor: Eugenio Chisari - Paper link: https://arxiv.org/abs/2010.11251

Topic 2: Learning quadrupedal locomotion over challenging terrain

- Rely only on proprioceptive measurements from joint encoders and an inertial measurement unit (IMU), the most durable and reliable sensors
- Distill a priviledged teacher policy
- Synthesise terrains that follow an adaptive difficulty schedule



Source: Lee et al. 2020

Supervisor: Eugenio Chisari - Paper link: https://arxiv.org/abs/2010.11251

Topic 3: One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control

- Most RL approaches learn policies specific to a particular agent. Can we instead learn a single global policy that generalises to a wide variety of agents?
- Assume each actuator as its own agent, sharing the same network and pass messages to propagate information

Topic 3: One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control

One Policy to Control Them All:

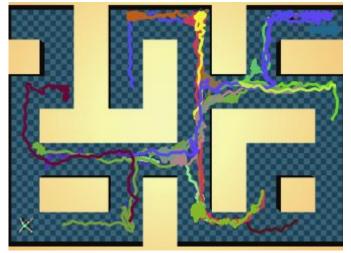
Shared Modular Policies for Agent-Agnostic Control

Source: Huang et al. 2020

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/pdf/2007.04976.pdf

Topic 4: Opal: Offline Primitive Discovery for accelerating offline Reinforcement Learning

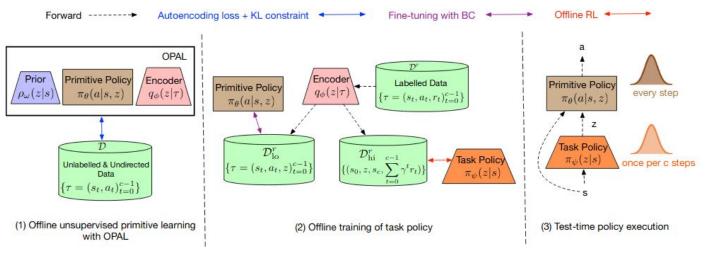
- Offline RL: an agent may have access to large amounts of undirected offline experience data, while access to the online environment is severely limited.
- Idea: extract a continuous space of recurring and temporally extended primitive behaviors before using these primitives for downstream task learning.



Source: Ajay et al. 2020

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/pdf/2010.13611.pdf

Topic 4: Opal: Offline Primitive Discovery for accelerating offline Reinforcement Learning



Source: Chen et al. 2019

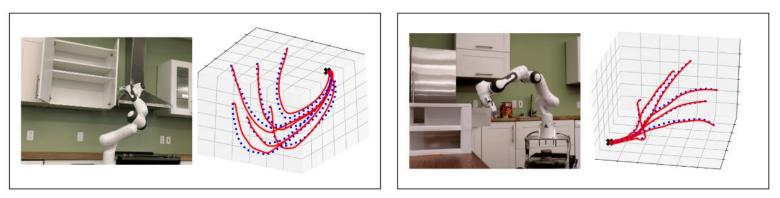
Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/pdf/2010.13611.pdf

Topic 5: Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable Dynamical Systems

- Robotic tasks often require motions with complex geometric structures.
- Goal: Learn such motions from a limited number of human demonstrations by exploiting the regularity properties of human motions e.g. stability, smoothness, and boundedness

Topic 5: Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable Dynamical Systems

- Instead of explicitly learning a stable dynamical system, view demonstrations as motions on a manifold which is linked, under a smooth bijective map, to a latent Euclidean space
- This results in an expressive class of diffeomorphisms suitable for learning stable and smooth dynamical systems



Supervisor: Dr. Tim Welschehold - Paper link: https://arxiv.org/pdf/2005.13143.pdf

Source: Rana et al. 2020

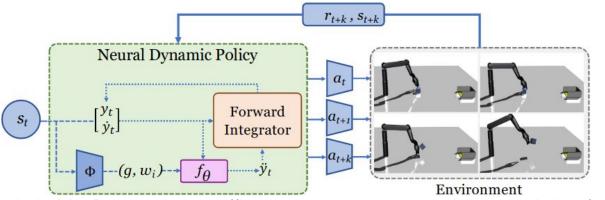
Topic 6: Neural Dynamic Policies for End-to-End Sensorimotor Learning

- Training policies directly in raw action spaces forces the agent to make decisions at each point in training, limiting its scalability to complex tasks
- Dynamical systems used in classical robotics lack the flexibility of deep learning
- Idea: reparameterize action spaces with differential equations to embed dynamics structure into NNs

Supervisor: Dr. Tim Welschehold - Paper link: https://biases-invariances-generalization.github.io/pdf/big_15.pdf

Topic 6: Neural Dynamic Policies for End-to-End Sensorimotor Learning

- Reparameterize the action space with non-linear differential equations corresponding to a dynamical system, train it end-to-end.
- 'Deep' part of the policy only needs to reason in the lower-dimensional space of building a dynamical system, so overall policy can easily reason in the space of trajectories.



Supervisor: Tim Welschehold - Paper link: https://biases-invariances-generalization.github.io/pdf/big_15.pdf

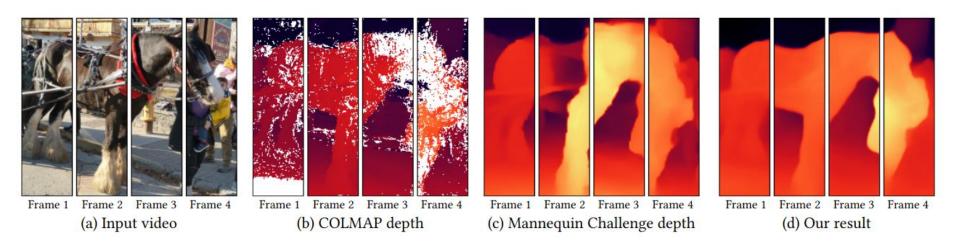
Topic 7: Consistent Video Depth Estimation

- Reconstruct dense, geometrically consistent depth for all pixels in a monocular video
- Leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video and a learning-based prior, i.e., a convolutional neural network trained for single-image depth estimation
- At test time, we fine-tune this network to satisfy the geometric constraints of a particular input video

Supervisor: Nikhil Gosala - Paper link: https://arxiv.org/pdf/2004.15021.pdf

Topic 7: Consistent Video Depth Estimation

- Conventional approaches: Incomplete depth on moving objects
- Learning based: flickering and geometrically inconsistent

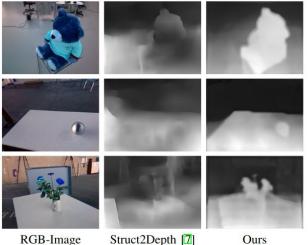


Source: Luo et al. 2020

Supervisor: Nikhil Gosala - Paper link: https://arxiv.org/pdf/2004.15021.pdf

Topic 8: Learning Depth with Very Sparse Supervision

- Can a three dimensional perception system be trained with the data that a robot would observe interacting with the environment?
- Novel global-local network architecture that takes images and extremely sparse depth measurements, down to even a single pixel per image



RGB-Image

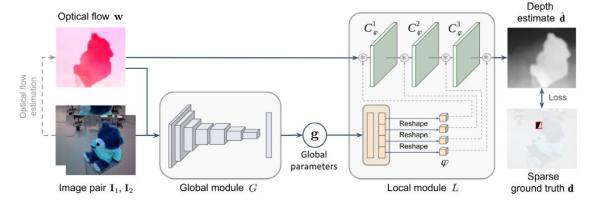
Ours

Source: Loguerico et al. 2020

Supervisor: Nikhil Gosala - Paper link: http://rpg.ifi.uzh.ch/docs/IROS20_Loguercio.pdf

Topic 8: Learning Depth with Very Sparse Supervision

- From flow and images estimate global parameters g representing camera motion
- Local module applies them to the optical flow field to generate final depth estimates



Source: Loquerico et al. 2020

• Strong results given as little as a single depth ground truth pixel

Supervisor: Nikhil Gosala - Paper link: http://rpg.ifi.uzh.ch/docs/IROS20_Loquercio.pdf

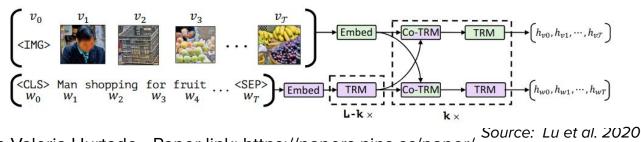
Topic 9: ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision and Language Tasks

- Visual understanding: corresponding understanding or *grounding* between vision and language
- Dominant strategy: start with separate pretrained language and vision models pretrained for other large-scale tasks – often resulting in myopic groundings
- New: joint model for learning task-agnostic visual grounding from paired visiolinguistic data

Supervisor: Juana Valeria Hurtado - Paper link: <u>https://papers.nips.cc/paper/</u> 8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf

Topic 9: ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision and Language Tasks

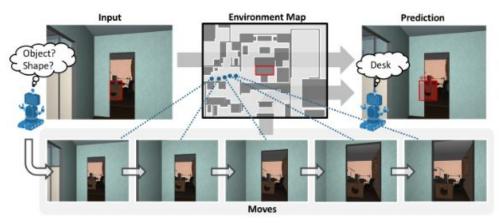
- ViLBERT: Vision-and-Language BERT
- Separate streams for vision and language processing that communicate through co-attentional transformer layers
- Training on proxy tasks: predicting semantics of masked words and image regions given the unmasked inputs, and predicting whether an image and text segment correspond



Supervisor: Juana Valeria Hurtado - Paper link: https://papers.nips.cc/paper/ 8297-vilbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks.pdf

Topic 10: Embodied Visual Recognition

- Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded
- Embodied visual recognition: agent is free to move in the environment to perform object classification, amodal object localization, and amodal object segmentation.

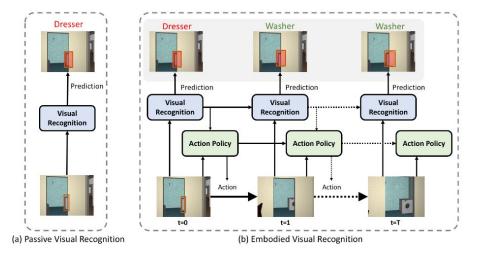


Source: Yang et al. 2019

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/pdf/1904.04404.pdf

Topic 10: Embodied Visual Recognition

- Embodied Mask R-CNN to learn to move for visual recognition.
- Make predictions at each step with the aim to improve visual recognition performance on the target object in the first frame.
- Learned moves are different from shortest-path moves and generalize well to unseen environments



Source: Yang et al. 2019

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/pdf/1904.04404.pdf

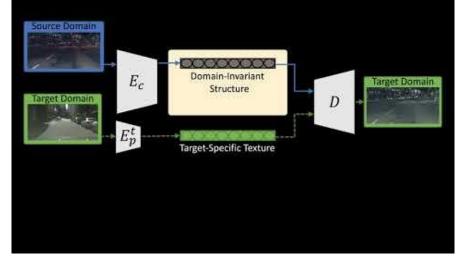
Topic 11: All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation

- Unsupervised domain adaptation for semantic segmentation: transfer knowledge learned upon synthetic datasets with ground-truth labels to real-world images without any annotation
- Disentangle images into domain-invariant structure and domain-specific texture representations

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1903.12212

Topic 11: All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation

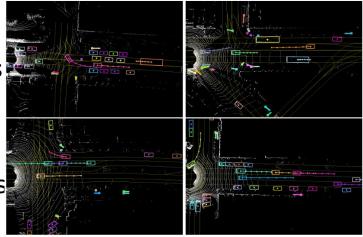
Domain Invariant Structure Extraction (DISE)



Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1903.12212

Topic 12: PnPNet: End-to-End Perception and Prediction with Tracking in the Loop

- Joint perception and motion forecasting in the context of self-driving vehicles
- PnPNet: end-to-end model that takes as input sequential sensor data, and outputs at each time step object tracks and their future trajectories
- Tracking module generates object tracks online from detections and exploits trajectory level features for motion forecasting



Source: Liang et al. 2020

Assessing Interest

- Fill out the form: <u>https://forms.gle/RdUgJfM5XKYQVGzW9</u>
- Places will be assigned based on priority suggestions of HisInOne and motivation of the student by 25/11/2020.