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Procedure

e Students should select three papers out of the list in preference order.

e Places will be assigned based on priority suggestions of HisInOne and
motivation of the student by May 24, 2020.

e Students are requested to prepare a 20 minutes talk, write an abstract and a
summary.

e The Seminar will be held as a virtual "Blockseminar” in the last week of July.



Procedure

e The details of the presentation and the slides should be discussed with the
supervisor two weeks before the presentation.

e The abstract should be two pages long and is due June 29, 2020.

e The summary is due two weeks after the presentation and should be even
pages long at maximum (latex, adwide, 11pt) not including the bibliography and
figures. Significantly longer summaries will not be accepted.

e The final grade is based on the oral presentation, the written abstract, the
summary, and participation in the blockseminar.



Classical Supervised Methods

e C(Classical supervised learning methods strongly rely on large labeled datasets
for training.

e Typical pipeline consists of collecting a dataset -> annotating the data ->
selecting an architecture and an objective function -> training the model

e Pretraining such models on large datasets such as ImageNet has alleviated
this limitation.

e Using layers from a pre-trained ImageNet model can have an important impact
on the speed of training, and accuracy



Classical Supervised Methods

e |n some cases, e.g. different types of data (robotics, medical imaging),
pretraining in ImageNet may not lead to a large improvement.

e We would need to collect and annotate a huge amount of data.

e Creating datasets with sufficient annotated examples is a challenging task, and
the process of labeling data is often arduous, expensive, and sometimes even

infeasible.



Learning in Humans
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Emmanuel Dupoux, “Cognitive Science in the Era of Artificial Intelligence”,
Cognition, vol. 173, pp. 43-59, 2018.




Self-supervised learning

e Self-supervised learning has emerged as
an alternative to mitigate this problem

e InSS, we first learn a pretext task
exploiting some property of the data

e We then use the learned semantically
rich representations for fine-tuning on
the target task.

e Advantages: Reduces or even eliminates
the cost of labelling and exploit
abundant unlabelled data

Unlabeled

Labeled




Self-supervised learning

e SS enables learning feature representation from unlabelled data by:
o Exploiting dependencies within the data itself.
o  Generating labels based on those dependencies.
o Solving a proxy objective on the generated labels.

e A portion of the input is used as a supervisory signal.

e Self-supervised learning allows using large amount of unlabelled data such as
text, images, and audios on the Internet.

e The model learns meaningful patterns of the data when solving the pretext
task.

e Then we can transfer the learned representation to solve the target task, also
called the downstream task.



Self-supervised learning: Natural Language Processing

o

o

e To complete the pretext task, >
the model learns the nature of >
language. >

e Then the pretext learned model

is used to solve more complex
supervised target tasks, such as
sentiment analysis.

ime —
» Predict the past from the present. ﬁ

» Predict the top from the bottom.

Self-supervised learning is widely used in natural language processing.
A pretext task example is to predict the next word of a sentence.

Predict any part of the input from any
other part.

Predict the future from the past.

9
17

Predict the future from the recent past.

!

« Past Future —
Present

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

Slide: LeCun

Source: Yann LeCun @EPFL - "Self-supervised learning: could
machines learn like humans?”




Self-supervised learning: Colorization

Individual image Colorization: a model is trained to color a grayscale input image.

Video Colorization: the task is to copy colors from a normal reference frame in
color to another target frame in grayscale by leveraging the natural temporal
coherency of colors across video frames.

Solving the pretext task, the model learns to keep track of correlated pixels in
different frames.

Reference Frame Future Frame (gray) Predicted Color True Color

Source: Vondric etal. 201




Self-supervised learning: Distortion

Rotation: Each input
image is first rotated.

The pretext task to
predict which rotation has
been applied.
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Self-supervised learning: Distortion

|ldentify the same image with different {
(X, y=0)
rotations Rf—w:g

Rotated image: X°

The model learns to recognize high level
. —» g(X,y=1)
object parts, such as heads, noses, and Rotate 90 degrees

. L. Rotated image: X'
eyes, and the relative positions of these :
parts, rather than local patterns. ;

;

Rotate 180 degrees

Rotated image: X~

This pretext task drives the model to learn

semantic concepts of objects. (X, y=3) i
Rotate 270 degrees

Rotated image: X°

Source: Gidaris et al. 2018




Self-supervised learning: Jigsaw

The model is trained to place shuffled patches back to the original locations.
Solving Jigsaw puzzles can be used to teach a system that an object is made of
parts and what these parts are.

Source: Noroozi et al. 2017




Self-supervised learning: Jigsaw

Two separate instances within the same categories have similar features (shape).
However, some low-level features are different (color and texture).

The Jigsaw puzzle solver learns to ignore such features when they do not help the
localization of parts.

Source: Noroozi et al. 2017



Self-supervised learning: Inpainting

Humans are able to understand this structure and make visual predictions even
when seeing only parts of the scene.

The pretext task (generative modeling) is to reconstruct the original input while
learning meaningful latent representation.
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Self-supervised learning: Inpainting

The model learns to fill in a missing piece in the image.

Source: Pathak, et al., 2016



Self-Supervised Learning: Cross-Modality and Robotics

e Self-supervision from cross-modality learning

e (Goal: Reliably classify terrains for safe & efficient navigation
o Equip the robot with a microphone and a camera
o Leverage labels obtained from a audio classifier for self-supervision of the visual classifier

n

Labels from unsupervised
audio clustering

Self-Supervised Labeling

| CRniLin)

Robot Trajectory Weakly Labeled Images Semantic Segmentation Network Terrain Segmentation

Source: Zurn, et al., 2019




Topic 1. SuperPoint: Self-Supervised Interest Point
Detection and Description

Interest points are 2D locations in an image which are stable
and repeatable from different lighting conditions and Interest Point
viewpoints.

Superset

Main task: Interest point detection.

This work uses a self-supervised approach to create a large
dataset of pseudo-ground truth interest point locations in real
images.

Source: DeTone et al. 2018

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1712.07629



Topic 1. SuperPoint: Self-Supervised Interest Point
Detection and Description

First, train a ConvNet based detector on Unlabeled Image Pseudo-Ground

a synthetic dataset with simple Truth Interest
geometric shapes with no ambiguity in " Points
the interest points. AW

Homographic 5
Adaptation

patterns. Source: DeTone et al. 2018

, _ Base Detector
Then, they combine the trained detector sy

and Homographic Adaptation to boost gggg /

the performance on image textures and

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1712.07629



Topic 1. SuperPoint: Self-Supervised Interest Point
Detection and Description

Homographic Adaptation is designed to enable self supervised training of
interest point detectors.

It warps the input image multiple times to help an interest point detector

see the scene from many different viewpoints and scales.
Homographic Adaptation

Sample Random  Warp Apply Get Point Unwarp
Homography Images Detector Response  Heatmaps

A\, E-[Al-fd - AT ] i
Base Detector/ i 2 > % "QU?UQ" % *i?@“’ - A
A

Source: DeTone et al. 2018

Unlabeled Image

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1712.07629



Topic 2: GANVO: Unsupervised Deep Monocular
Visual Odometry and Depth Estimation with
Generative Adversarial Networks

Tasks: Visual odometry (VO) and depth recovery.

Uses adversarial and recurrent unsupervised learning approaches for joint
pose and depth map estimation.

Generates depth images without any need for depth ground truth
information.

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1809.05786



Topic 2: GANVO: Unsupervised Deep Monocular
Visual Odometry and Depth Estimation with
Generative Adversarial Networks

Network consists of a pose regressor
(CNN-RNN modules) and depth generator et mage ] Generator }“
View
Reconstruction

Original
target image (1,)

network (GAN).

— Discriminator = p(i, )

Takes a sequence of monocular images to Input sequence

estimate 6-DoF camera motion and depth map %~MP
that is sampled from the same input data

distribution.
Source: Almalioglu et al. 2019

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1809.05786



Topic 3: SelFlow: Self-Supervised Learning of Optical
Flow

Task: optical flow estimation ( pattern of apparent motion of objects).

e The basic idea behind unsupervised optical flow learning is to warp the
target image towards the reference image according to the estimated optical

flow
e Then minimize the difference between the reference image and the warped

target image using a photometric loss.
e This idea could provide misleading information for occluded pixels.

Source: Liu et al. 2019

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1712.07629
B



Topic 3: SelFlow: Self-Supervised Learning of Optical
Flow

Pretext task: Distilling reliable flow estimations from non-occluded pixels.

These predictions are used to guide the optical flow learning for hallucinated
occlusions.

This paper shows that a self-supervised approach can learn to estimate optical
flow with any form of occlusions from unlabeled data.

(b) GT Flow (¢) Our Flow (d) GT Occlusion (e) Our Occlusion
( . - \
A = A
. L

Supervisor: Dr. Daniele Cattaneo - Paper link: https://arxiv.org/abs/1904.09117



Topic 4: A Simple Framework for Contrastive Learning
of Visual Representations

e Self-supervised discriminative approaches learn representations using
objective functions similar to those used for supervised learning,

e They train networks to perform pretext tasks where both the inputs and
labels are derived from an unlabeled dataset.

e Such approaches have relied on heuristics to design pretext tasks which
could limit the generality of the learned representations.

e Discriminative approaches based on contrastive learning in the latent space
have recently shown great promise, achieving state-of-the-art results.

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/2002.05709
B



Topic 4: A Simple Framework for Contrastive Learning
of Visual Representations

The model learns representations by maximizing agreement between differently
augmented views of the same data example via a contrastive loss in the latent

space.

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(a) Original

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Source: Chen et al. 2019

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/2002.05709




Topic b: Grasp2Vec: Learning Object Representations
from Self-Supervised Grasping

Task: Acquiring object-centric representations through autonomous robotic
interaction with the environment.

Instance Grasping Representation Learning

Goal Outcome

é tﬁ Generates Labels Before After Out(cgme
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Generates Labels

Source: Jang et al. 2019

Instance grasping and representation learning processes generate each other’s
labels in a fully self-supervised manner.

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/1811.06964



Topic b: Grasp2Vec: Learning Object Representations
from Self-Supervised Grasping

® Representation learning from grasping:

Instance Grasping Representation Learning

OOOOOOO

o A robot arm removes an object from the scene. S Conemestabes | fomady— . fcm = B )
| een Ly . WU - (T)
o  Observes the resulting scene and the object in the e o (&]@][ 8 &
gripper. [ocna @@ o R N Objec@?mm

Generates Labels

o Thenitis enforced that the difference of scene Source: Jang et al. 2019

embeddings matches the object embedding.

Supervising grasping with learned representations: This work proposes to use a
similarity metric between object embeddings as a reward for instance grasping,
removing the need to manually label grasp outcomes.

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/1811.06964



Topic 6: Visual Reinforcement Learning with Imagined
Goals

For an autonomous agent to fulfill a wide
range of user-specified goals at test time, it
must be able to learn broadly applicable
and general-purpose skill repertoires.

The particular goals that might be required
at test-time are not known in advance.

Source: Nair et al. 2019
Pusher, door opening, and pick-and-place.

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/1807.04742



Topic 6: Visual Reinforcement Learning with Imagined
Goals

In this work the agent performs a self-supervised “practice” phase where it
imagines goals and attempts to achieve them.

Combines goal-conditioned reinforcement

self-generated goal

learning with unsupervised representation wain vag ¢, Train
learning. { fua
- 2 ~ N (0,1)

Zg

{St} v
< < Qu(z,a,z5)
mo(z, 2g)
train w,

a latent distribution that can be used to
sample goals for unsupervised practice.

Representation learning is used to acquire .
data

z=e(st)

Source: Nair et al. 2019

Supervisor: Daniel Honerkamp - Paper link: https://arxiv.org/abs/1807.04742




Topic 7: Improving Semantic Segmentation through
Spatio-Temporal Consistency Learned from Videos

Task: Semantic Segmentation

1. Learning from video streams, as opposed to images, offers temporal coherency
as a strong cue that can significantly enhance segmentation.

2. 3D Multiview consistency is as an additional supervision signal to train a
single-frame segmenter, and as an additional signal at multi-frame inference
time.

3. Unsupervised depth and egomotion estimation can bring together temporal
continuity and multiview consistency as supervision signals for improving
segmentation models.

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/2004.05324
B



Topic 7: Improving Semantic Segmentation through
Spatio-Temporal Consistency Learned from Videos

Depth, egomotion, and camera

intrinsics to improve the performance H
of single image semantic B>
segmentation, by enforcing

s|qe|ieAe uaym
|1oqe| uoneuawbag

3D-geometric and temporal
consistency of segmentation masks
across video frames.

/ ScanNet /

Source: Pasad et al. 2020

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/2004.05324



Topic 8: VideoBERT: A Joint Model for Video and
Language Representation Learning

Tasks: action classification and video » S
captioning. :

Traina joint visual-linguistic model to

learn high-level features without any

explicit supervision. GT: add some chopped basil leaves into it
VideoBERT: chop the basil and add to the bowl

S3D: cut the tomatoes into thin slices

Source: Sun et al. 2019

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/1904.01766



Topic 8: VideoBERT: A Joint Model for Video and
Language Representation Learning

Using videos where the spoken words
are more likely to refer to visual
content, this work presents a way to
model the relationship between the
visual domain and the linguistic
domain.

GT: cut the top off of a french loaf
VideoBERT: cut the bread into thin slices
S3D: place the bread on the pan

Source: Sun et al. 2019

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/1904.01766



Topic 9: Self-Supervised Scene De-occlusion

Task: recover the underlying occlusion ordering and complete the invisible parts of
occluded objects.

Source: Zhan et al. 2020

Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/2004.02788



Topic 9: Self-Supervised Scene De-occlusion
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Supervisor: Juana Valeria Hurtado - Paper link: https://arxiv.org/abs/2004.02788




Topic 10: Imitation from Observation: Learning to
Imitate Behaviors from Raw Video via Context
Translation

The goal in imitation-from-observation is to learn policies only from a sequence of
observations of the desired behavior, with each sequence obtained under
differences in context.

Source: Liu et al. 2018

Supervisor: Tim Welschehold - Paper link: https://arxiv.org/abs/1707.03374



Topic 10: Imitation from Observation: Learning to
Imitate Behaviors from Raw Video via Context
Translation

e Use videos of an expert demonstrator to train a
demvoil;zor:mn train translation / predic p b h

context translation model. e

e At learning time, robot sees the context of the task 1@»“
it needs to perform. g]} |

e Then, the model predicts what an expert would do d
in the robot context.

e This predicted sequence is used to define a cost
function for RL thus enabling imitation from
observation.

Source: Liu et al 2018

Supervisor: Tim Welschehold - Paper link: https://arxiv.org/abs/1707.03374




Topic 11: Unsupervised Perceptual Rewards for
Imitation Learning

Complex robotic manipulation skills learned

directly and without supervised labels from a .'mma
video of a human performing the task. J\_\_/___/_
Reward function for reinforcement learning Imym

learned from human demonstrations. e e
AAMMAAAAR LI ] ]
/

Source: Sermanet et al. 2017

Supervisor: Tim Welschehold - Paper link: https://arxiv.org/abs/1612.06699




Topic 12: Time-Contrastive Networks: Self-Supervised
Learning from Video

Learning representations and robotic behaviors entirely from unlabeled videos
recorded from multiple viewpoints.

Source: Sermanet et al. 2018
Supervisor: Tim Welschehold - Paper link: https://arxiv.org/abs/1704.06888




Topic 12: Time-Contrastive Networks: Self-Supervised
Learning from Video

e Learning signal from unlabeled multi-viewpoint
videos of interaction scenarios.

e The learned representations effectively
disentangle functional attributes such as pose
while being viewpoint and agent invariant.

e The robot can learn to link this visual
representation to a corresponding motor
command using either reinforcement learning.

Source: Sermanet et al. 2018

Supervisor: Tim Welschehold - Paper link: https://arxiv.org/pdf/1704.06888.pdf




Assessing Interest

https://forms.gle/BvMtCXkKJt9XsaxB7



https://forms.gle/BvMtCXkKJt9XsaxB7

