universitätfreiburg

How to Make a Good Presentation Seminar: Learning with Limited Supervision Summer Semester 2024

José Arce y de la Borbolla

Robot Learning Lab

June 21st, 2024

With every presentation...

you present your work...

and yourself!

- 1. Slides: Content & Layout
- **2. Presentation**
- **3. Conclusion**

Slides Content & Layout

Slides

Quick Remarks

- Typically done long before the presentation
 - Rule of Thumb: At most 1 slide per minute
- Tool to help you convey your message
 - Images, Videos, Graphs, Animations, etc.
- Not meant as a **teleprompter**
 - Do not read from the slides

universitätfreiburg

Slides

Structure of Scientific Presentations

- Introduction and Motivation
- State-of-the-Art
- Approach
- Experiments and Results
- Conclusion
- Brief Outline slide
- Use Section break slides
 - Guide your audience

1. Introduction & Motivation	
2. State-of-the-Art	
3. Approach	
4. Experiments & Results	
5. Conclusion	
misonitätfealaura	Johan Doe I Robot Learning Lab I 11, Mai 2023
Part 2. Methodology Our brilliant idea that nobody thought before and which lead to awesome results	

The Sections

universitätfreiburg

Introduction and Motivation

Describe:

• The problem

The Sections

- Why is it relevant?
- Open question
- How your approach tackles this question?

Source

Why should people care about your work?

The Sections State-of-the-Art

- Mention relevant past approaches
- How does your work go beyond the SotA?
- Balance between praise and criticism:
 - Mention what other approaches do and what they solve (be friendly, make the authors happy!)
 - Point out their drawbacks without diminishing their worth
 - Specify in which way your approach is better (do not downplay the work of others!)

The Sections Approach

- Intention:
 - Not to show off your skills!
 - Make your audience understand how your approach works
- Provide technical details and intuition
- Use graphics and examples to explain technical details

The Sections Experiments and Results

- Explain your experimental setup
- Should back up your claims
- Demonstrate your approach has the **desired features**
- Illustrate that your approach is **better than previous ones**

The Sections Conclusion

- Describe the contributions of this paper
- A good first sentence:

"We presented a novel approach to"

- Highlight the key idea of the work
- Talk about limitations
- How they can be addressed in **future work**?

universitätfreiburg

Slide Design Quick Remarks

- Use the provided <u>template</u>
 - Font size might be too small (18pt)

• Use the footer area

Slide Design Bullet Points

- Only use a bullet point when you have **multiple** things to list
- Line distance between bullet points
- Manage headline vs. content space vs. negative space

Slide Design Text

- Use **Sans-Serif** fonts:
 - Avoid Serif fonts, Comic Sans, Papyrus, Wolland, ...

Left aligned text is easier to read...

... than centered text

- Avoid **clutter** / too much text
- Adjust font size based type of presentation (Zoom / in-person)

Slide Design Text Color

- Dark text on light background (easy to read)
- Light text on dark background (not so easy to read)
- Check readability
- Check readability
- Check readability
- Check readability
- Red and green are hard to distinguish for a large fraction of the population
- Check readability, maybe ask others!

Slide Design Abbreviations

- Abbreviations reduce the length of the text
- Use them sparingly!
 - Make you appear like an insider,
 - while others feel like outsiders
- Avoid abbreviations (unless they are **common**)
 - DIY, ASAP, UK, USA \rightarrow Common abbreviations
 - PQ, SQ, RQ \rightarrow Uncommon abbreviations

Slide Design Font Size

- Not an eyesight test:
 - Make sure that everyone can read the text (26Pt)
 - Make sure that everyone can read the text (23 Pt)
 - Make sure that everyone can read the text (20 Pt)
 - Make sure that everyone can read the text (16 Pt)
 - Make sure that everyone can read the text (14 Pt)
 - Make sure that everyone can read the text (12 Pt)
 - I could write whatever I want, nobody will notice (10 Pt)
- The caption should not be smaller than text on the slide

universitätfreiburg

Slide Design Figures

- Prefer vector graphics over raster images
- Grab an image from a paper at the highest resolution
 - Find original > Extract from PDF > Screen Capture (zoom in!)
- If the image is pixelated, redraw the figure!
- To check, connect your computer to an LCD monitor and check the quality by going close to the screen

Slide Design Figures

• A couple of issues with this figure ...

universität freiburg

Slide Design Figures

- Check
 - Resolution
 - Aspect Ratio
 - Crop
 - Alignment

universität freiburg

Algorithms and Equations

```
Algorithm 1 Coverage(S)
 1: C \leftarrow S //Set the current node to S
 2: \mathcal{P}_{aux} \leftarrow C
 3: \mathcal{P} \leftarrow \emptyset
 4: while 1
             \forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| < M_{\mathrm{R}} \cdot e_{\mathrm{cell}}
 5:
                   visited(m) = 1
             \forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| \geq 2M_{\mathrm{R}} \cdot e_{\mathrm{cell}}
 6:
                   overlapped(m) = 1
 7:
             \mathcal{N}_C \leftarrow \{n \in \mathcal{N} \mid \|c_n - c_C\|_{\infty} = (2M_{\mathrm{R}} + 1) \cdot e_{\mathrm{cell}}
                   and overlapped(n) = 0 and q(n) < \infty}
            if \mathcal{N}_C \neq \emptyset
 8:
                   find M \in \mathcal{N}_C with minimal q
 9:
10:
             else
11:
                   \mathbf{D}^{*}(C) and stop at \mathbf{visited}(M) = 0
                         or ||c_M - c_o||_{\infty} = e_{\text{cell}}, o \in \mathcal{O} \text{ and } \exists n,
                         \mathbf{visited}(n) = 0, \|c_M - c_n\| < M_{\mathbf{R}} \cdot e_{\mathrm{cell}}
                   if no such node M exists
12:
13:
                        return \mathcal{P}
14:
                   end
15:
             end
16:
            \mathcal{P}_{aux} \leftarrow \mathcal{P}_{aux}(C, M)
             C \leftarrow M //Set the new current node
17:
18:
             \mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}_{aux}
19: end
```

[Dakulovic et al., IFAC 2011]

Slide Design Algorithms and Equations

- Algorithms are **boring** / hard to present
- Same goes to equations
 - Nobody remembers symbols introduced in previous slides

• Keep them in the **appendix** in case someone asks for details

Algorithms and Equations

 $G_t \sim \mathrm{DP}_t(\alpha_t, \mathrm{BP}_n(c_n, \alpha_n, \mathrm{Dir} \times \mathcal{NW})),$ $G_c^{(s)} \sim \mathrm{BP}_c(1, |A_s| \alpha_c, G_t \times U(A_s \times [-\pi, \pi]))$ (2) $\{G_{t_j}, T_j\}_j \sim \operatorname{BeP}(G_c^{(s)})$ (3) $\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\gamma}_k\}_k \sim \operatorname{BeP}(G_{t_i})$ for each j (4) $\{\mathbf{x},\omega\} \sim p(\mathbf{z} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \boldsymbol{\gamma}_k, T_i)$ for each k (5) $G_{\epsilon}^{(s)} \sim \mathrm{BP}_{\epsilon}(1, \alpha_{\epsilon}, M \times U(A_s))$ (6) $\{\mathbf{x}_i, \omega_i\}_i \sim \operatorname{BeP}(G_{\epsilon}^{(s)})$ (7) $p(\mathbf{C}, \mathbf{a}, \mathbf{z}) = \left(\prod_{s=1}^{S} p(n_{s,\epsilon}) p(n_{s,m})\right) p(\mathbf{t}) \left(\prod_{t=1}^{n_t} p(\mathbf{d}_{[t]} \mid \mathbf{t})\right)$ $p(\mathbf{T})\left(\prod_{t=1}^{n_t}\prod_{t=1}^{K_t}p(\mathbf{z}_{[\mathbf{d}_{[t,k]}]} \mid \mathbf{T}_{[t]}, \mathbf{d}_{[t,k]}, \mathbf{t})\right).$ (8) $p(n_{s,\epsilon}) = p(\mathbf{z}_{[\mathbf{a}_{[s]}]}, \mathbf{a}_{[s]}) = n_{s,\epsilon}! \operatorname{Poi}(n_{s,\epsilon} \mid \alpha_{\epsilon})(n_{\omega} \mid A_s \mid)^{-n_{s,\epsilon}}.$ (9) $p(t_{j}, \mathbf{d}_{j} \mid \mathbf{t}_{[-i]}, \mathbf{d}_{[-i]}) = p(\mathbf{d}_{j} \mid \mathbf{d}_{[-i,t_{i}]}, \mathbf{t})p(t_{j} \mid \mathbf{t}_{[-i]}).$ (10) Here, $p(t_i | \mathbf{t}_{[-i]})$ is the CRP predictive distribution $p(t_j = i \mid \mathbf{t}_{[-j]}) = \begin{cases} \frac{n_i}{\alpha_c + \sum_{i'} n_{i'}} & t_j \text{ is an existing type} \\ \frac{\alpha_c + \sum_{i'} n_{i'}}{\alpha_c + \sum_{i'} n_{i'}} & t_j \text{ is a new type} \end{cases},$ (11)universitätfreiburg

universitätfreiburg

Courtesy of Adrian Röfer

Algorithms and Equations

Instead:

- Introduce the idea
- Use diagrams or animations
- Design toy examples to explain:
 - the inner workings
 - important features of the algorithm
- What should audience take away?
 - Intuition behind your algorithm
 - General idea of how it works

Tables

My not so awesome results

Baseline	Асс	mAP	AP ₅₀	AP ₇₅	AP ₉₀	AP _s	AP _m	APL	MSE
MLP	65.17931499	51.10769197	48.96746961	54.61312357	0.947493075	87.147549	73.80109773	65.17931499	1.537611e1
ResNet	63.5059482	74.204388	58.83328263	43.3834097	0.5307199053	69.69859185	59.92916455	63.50959482	9.999999
RNN	94.09628891	54.46471774	<u>94.473017</u>	98.18218359	0.8399473363	63.07418726	64.85948246	94.096291	8.645
Transformer	86.43944795	55.96271	79.16797267	89.20976538	0.6289675	4.570553e1	45.32042211	86.4344795	5.277434
GCNN	46.42088664	68.24851811	84.03977	65.50471894	81.19881366	73.95157154	54.41238821	46.4208664	<u>4.785</u>
Ours	89.44789127	<u>80.4517</u>	96.288	<u>92.04034965</u>	<u>81.55</u>	92.28013688	97.2400282	<u>99.37020661</u>	0.77954122
DinoV2	99.37020661	62.41543812	77.05379813	0.608938	91.44263909	41.51532745	91.77551728	94.37661	6.774
Diffusion	53.57308955	57.0322709	80.13649621	78.56749	73.97519969	47.06480578	45.6406477	53.57308955	7.12345678
Mamba	73.87519057	52.16184837	61.69384238	45.72795333	68.66335717	74.31961469	83.4%	73.875	6.5100988

universität freiburg

Tables

- Horizontal lines = good
 - Vertical lines = bad
- Units and direction of best
- Citations
- Consistent number formatting
- Highlight best (and second best)
- Caption
- Try to avoid, use plots instead

My awesome results

Baseline		Acc [%] ↑	AP ₅₀ [%] ↑	MSE [cm] ↓
MLP	[1]	78.9	68.3	15.4
ResNet	[2]	85.3	71.4	9.9
RNN	[3]	81.6	74.4	8.7
Transformer	[4]	88.7	78.6	<u>5.3</u>
Mamba	[5]	91.3	<u>79.2</u>	6.5
Ours		<u>89.4</u>	81.5	0.8

Slide Design Plots

Slide Design Plots

- Use easily distinguishable colors and patterns
- Order the legend according to the functions
- Axes labels, units, ticks
- High resolution
- Create your own if needed

Slide Design Animations

- Animations are useful to explain content, illustrate processes, guide the focus of your audience, ...
- Not meant to entertain
- Are easily overdone
- Can be very distracting
- Only with purpose
- No need to show off your mad PowerPoint skills

Slide Design Spell Checking

- Do'nt get cauhgt whit a most envarazing typo
- Check you're speling wile writeing
- Prufe reed ober and over
- Than aks some one else too dobel chek
- Your PC has a spell checker: Use it!
- There are other tools such as **Grammarly**
- Don't forget to set the correct language

Benutzen Sie die Rechtschreibprüfung!

Slide Design Consistency

Throughout the entire presentation:

- Use a fixed, consistent color palette
- Consistent shapes
- Same mathematical symbols and variable names
- Same colors / styles for plots:
 - If velocity is green in one plot, ensure it is green in other plots too
 - also for baselines

Presentation

Presentation

In-Person

- Check if your laptop works before the talk
- Are the colors OK?
- Are the videos visible on both screens?
- Do not boot your computer in front of the audience (use suspend to RAM)
- Better do not close the lid before connecting your laptop
- Check the entire presentation (esp. videos) when you have to give it on a computer different from yours

Presentation On-Line

- Check your camera and positioning beforehand
- Be in the **centre** of the image
- Make sure you're well lit, and do not sit against the light
- Be aware of your **background**
- Check whether videos run smoothly on the conferencing software
- Be familiar with the software: How to share the (correct) screen, enter presentation mode etc.

Presentation

Presenter View

- Allows you to view **notes** for each slide
- Lets you check where you should be according to the timing
- Lets you make a proper transition to the next slide

universitätfreiburg

Presentation

Your Presentation

- Plan it
- Rehearse it (multiple times)
- Time it
- Think about how to deal with interrupting questions
- Practice transitions between slides

• Keep in mind: This is **your** show. Optimise it!

Presentation Laser Pointer

- Helps you to point at things
- Use the laser pointer instead of the mouse cursor
- Clearly visible and hard to miss
- Laser pointer visible from the presentation mode as well
- Not a Disney Sing-Along-Song
 - Not everything needs to be pointed at

Presentation

Voice

- Speak up to make sure that everyone can hear you
- Modulate your voice tone
- Avoid dialect
- Avoid idioms
- Avoid repetitions (look for alternatives or synonyms if you discover it)
- Avoid filler words and hesitation vowels like "ahem", "uh", "well", "yes"

Presentation

Questions & Interruptions

- Think positive!
- Questions are good and show that people are interested
- **Repeat** the question to ensure that you understood it properly
- If you cannot answer a question, **be honest** about it
- Suggest to take the discussion offline, if the answer would take too long or diverges from the talk

Presentation Timing

- Test the duration of your presentation beforehand
- Keep a **timer** running
- If you tend to stumble on phrasing: Slide notes can serve as a crutch

YOUR PRESENTATION

HOW YOU PLANNED IT:

- A talk is a unique opportunity to present yourself
- Prepare it carefully
- Practice it extensively
- There is no reason to be late with your presentation
- There is no reason not to be prepared

Thank you for ar attention !!!

José Arce | Robot Learning Lab | 21. Juni 2024

.versität freiburg

- A talk is a unique opportunity to present yourself
- Prepare it carefully
- Practice it extensively
- There is no reason to be late with your presentation
- There is no reason not to be prepared