universitätfreiburg

SS24 Seminar Learning with Limited Supervision

José Arce

Robot Learning Lab

17 April 2024

Agenda

I. Organization: Enrollment, important dates and evaluation.

II. Robot Learning Lab: Our research interests and publications.

III. Topics: Seminar Papers.

?. Questions.

Organization

Enrollment, important dates and evaluation criteria

Seminar

Objectives

- Learn to read and understand scientific literature.
- Familiarize with the State-of-the-Art (SOTA) in the field.
- Discover **limitations**, propose **improvements** and potential **future** work.
- Build knowledge from related work, prior and follow-ups.
- Improve presentation skills.
- Develop abilities for **synthesis** (diagram drawing, summarizing main ideas, ...).

TL;DR:

Show us that you have a **solid** grasp of your topic.

			Sro Reco	- Der Auchrnoheerklu	10 dae Marani in dan '	lahran raaala.
		_				
		Heft 48.	SCHRÖDINGER: Die gegenwärtig	ge Situation in der Or	uantenmechanik.	81
						klapp n Kol 18 di ssage:
		810 Schrödinger: Die	gegenwärtige Situation in der Qu	antenmechanik.	Die Natur-	t sic jeder
					charten	nich
					. das n ab- elche	tücke Zah dwert
	1	Isti 48. 1 SCHRÖDINGER: Die gegenwärtige Situation	in der Quantenmechanik.	800	wird, muß,	tünd
		· · · · · · · · · · · · · · · · · · ·			ander	Theor
				h für Itlich	sfühl,	i kla
				b ovo	ingen	hen?
				l darf	ssage e des	ß ma
808	SCHI	RÖDINGER: Die gegenwärtige Situation in der Quantenmecha	nik. Die Natur- wissenschaften	Mes-	3wert	tück
			en kommt	mmte	neuer	r Ve
			den ersten	praus-	klas-	fend
			dreizehntes, ren Koordi-		fälle,	
			your abourda-	lb zu n ist:	der	nd A
תו די גוא יוור	W/IC	CONICCULT D'TONT	· 22)2 .	ndere	hern,	ringe
DIE NAI UR	WIS	SENSCHAFIEN	e oft auch	er der enken	hnit-	et, d
			unbegrenzt.	lessen	sich	yster
3. Jahrgang	29. Nove	mber 1935 Heft 48	alle übrigen	Bild	ürde, Elek-	es, u
			ele anderer,	üfung	man	ist e
Die gegenwärtig	e Situatio	n in der Quantenmechanik.	e sind: die	tende	iteren	. hätt
Ve	on E. Schrö	DINGER, Oxford.	nktes, die	rückt	Aus-	e Ve
Inhaltsübersicht. § 1. Die Physik der Modelle.		Gebilde, das sich mit der Zeit verändert, das ver- schiedene Zustände annehmen kann: und wenn	sbewegung.	h ver-	wert-	ssiscl
§ 2. Die Statistik der Modellvariablen tenmechanik	in der Quan-	ein Zustand durch die nötige Zahl von Bestim-	a. sie haben	heorie	von	ar B Änd
§ 3. Beispiele für Wahrscheinlichkeits	voraussagen.	mungsstücken bekannt gemacht ist, so sind nicht nur alle anderen Stücke in diesem Augenblick mit	ie im Laufe	erein-	10 m	sen is
3 4. Kann man der Theorie Ideale G unterlegen?	.esamtneiten	gegeben (wie oben am Dreieck erläutert), sondern	behalten sie	er es	heiten	er de Aodel
§ 5. Sind die Variablen wirklich ver § 6. Der bewußte Wechsel des erkenn	waschen?	jeder bestimmten späteren Zeit; ähnlich wie die	ied von den	ungen	. eine	Funl
tischen Standpunktes.	Emerture	Beschaffenheit eines Dreiecks an der Basis seine		I aus-	tücke	ige d
§ 8. Theorie des Messens, erster Tei	l.	hört mit zum inneren Gesetz des Gebildes, sich in	len in der	shelfs,	Aber	kt. 1
§ 9. Die φ-Funktion als Beschreibt standes.	ing des Zu-	bestimmter Weise zu verändern, das heißt, wenn es in einem bestimmten Anfangszustand sich selbet	anmachanilt	t prä-	bald Hälite	st, be
§ 10. Theorie des Messens, zweiter Te § 11. Die Aufhebung der Verschränku	ng. Das Er-	überlassen wird, eine bestimmte Folge von Zu-	lleicht noch	n die	klares	it" u lenke
gebnis abhängig vom Willen des tators	Experimen-	ständen kontinuierlich zu durchlaufen, deren jeden es zu ganz bestimmter Zeit erreicht. Das ist seine	vie ich fest den Angel-	i, was	tuben	aß d
§ 12. Ein Beispiel.		Natur, das ist die Hypothese, die man, wie ich	aß Modelle	nächt-	v. v.)	t dar
§ 13. Fortsetzung des Beispiels: all Messungen sind eindeutig verscl	e möglichen hränkt.	oben sagte, auf Grund intuitiver Imagination setzt.	ler, so wic der Natur	t, was	stets ihre	radi
§ 14. Die Änderung der Verschränkung Bedenken gegen die Sonderstellt	mit der Zeit.	Natürlich ist man nicht so einfältig zu denken,		grund-		Grai
§ 15. Naturprinzip oder Rechenkunst	griff?	daß solchermaßen zu erraten sei, wie es auf der Welt wirklich zugeht. Um anzudeuten, daß man	das glaubt,	herr-	ntlich g der	eht,
§ 1. Die Physik der Modell	le.	das nicht denkt, nennt man den präzisen Denk-	verwendet	en ist.	a der	ans d
ar aus den großen Erfolgen der	kinetischen	Bild oder ein Modell. Mit seiner nachsichtslosen	ndern auch		Vor-	
astheorie und der mechanischen 7	Theorie der	Klarheit, die ohne Willkür nicht herbeizuführen	rminierung,	b wie	tralen	
ervorgewachsen, das als Krönung ja	hrhunderte-	eine ganz bestimmte Hypothese in ihren Folgen	riablen der-	ischen	ie der	
ngen Forschens und Erfüllung jahrta offnung einen Höhenunkt bildet un	d das klas-	geprüft werden kann, ohne neuer Willkür Raum	irden. Fol-	mente	Mesen 3 man	
sche heißt. Dieses sind seine Züge.		durch die man Folgerungen ableitet. Da hat man	tandes geht	Wahr-	e des	
erhalten man erfassen möchte, bilde	eobachtetes et man, ge-	gebundene Marschroute und errechnet eigentlich nur, was ein kluger Hans aus den Daten direkt	r wohlaus- Satzes von	1 stets		- 10
ützt auf die experimentellen Dater	1, die man	herauslesen würde! Man weiß dann wenigstens,	isen lassen;	tellter		-
sitzt, aber onne der intuitiven Ima	len Details	wo die Willkür steckt und wo man zu bessern hat, wenn's mit der Erfahrung nicht stimmt; in der	disweise den Geschwin-	e ent-		
nau ausgearbeitet ist, viel genauer	als irgend-	Ausgangshypothese, im Modell. Dazu muß man	dere Grup-	r Zeit		
nfangs je verbürgen kann. Die Vo	rstellung in	artigen Experimenten das Naturobiekt sich wirk-	lige Stücke	ie die	-	_
rer absoluten Bestimmtheit gleicht eis atischen Gebilde oder einer	nem mathe-	lich so benimmt wie das Modell, so freut man sich	estimmtheit			
elche aus einer Anzahl von Bestimm	ungsstücken	Zügen der Wirklichkeit gemäß ist. Stimmt es bei	hen Modell			
nz und gar berechnet werden kann; nem Drejeck eine Seite und die zu	wie z. B. an	einem neuartigen Experiment oder bei Verfeine-	kannt sein.			
egenden Winkel, als Bestimmungss	tücke, den	sagt, daß man sich nicht freut. Denn im Grunde	then Mecha-			
utten winkel, die anderen zwei Seit- öhen, den Radius des eingeschrieber	en, die drei nen Kreises	ist das die Art, wie allmählich eine immer bessere Anpassung des Bildes, das heißt unserer Gedarken	ablen datur		_	
sw. mit bestimmen. Von einer geo	metrischen	an die Tatsachen gelingen kann.				
igur unterscheidet sich die Vorstel lesen nach bloß durch den wichtiger	Umstand,	Die klassische Methode des präzisen Modells hat den Hauptzweck, die unvermeidliche Willkür				
aß sie auch noch in der Zeit als vierter	Dimension	in den Annahmen sauber isoliert zu halten, ich				
imensionen des Raumes. Das heißt	es handelt	für den historischen Anpassungsprozeß an die				
ch (was ja selbstverständlich ist) st	ets um cin	fortschreitende Erfahrung. Vielleicht liegt der				
Nw. 1935		52				

Enrollment Procedure

Please check the course website for more information:

https://rl.uni-freiburg.de/teaching/ss24/seminar-limited-supervision

Important Dates

Event	Date	Time
Lecture 1: Introduction *	17.04.2024	10:00
HISinOne registration + Paper Selection	22.04.2024	
Place allocation	26.04.2024	
Paper assignment	30.04.2024	
Supervisor Meeting	06.2024	
Lecture 2: <i>How to do a good presentation</i> *	21.06.2024	10:00
Lecture 3: Block Seminar Presentations *	19.07.2024	9:00 - 17:00
Paper Summary submission	02.08.2024	< 23:59

* Mandatory in-person attendance

Evaluation Criteria

Evaluation	Due Date		
Seminar Presentation	19.07.2024		
Paper Summary	02.08.2024		

- Presentation: at most 20 min.
- Summary: at most 7 pages excluding bibliography and figures.
- Final grade:
 - Presentation (slides & delivery) + Summary + Seminar Participation.

П.

Robot Learning Lab

Our research interests and publications

Autonomous Robotics

Can we learn certain parts of this pipeline?

Robot Learning Lab Robot Learning

Learning ...

- ... models of robots, tasks or environments
- ... deep hierarchies/representations from sensor and motor representations to task representations
- ... plans and control policies
- ... methods for probabilistic inference from multi-modal data
- ... structured spatio-temporal representations, e.g. low-dim. embeddings of Movements

How can we ensure **autonomous operation** of embodied AI systems

with limited supervision ?

Robot Learning Lab Research Areas

Perception

- Recognition
- Depth Estimation
- Motion Estimation

State Estimation

- Tracking & Prediction
- SLAM
- Registration

Motion Planning

- Hierarchical Learning
- Reinforcement Learning
- Learning from demonstration

Responsible Robotics

- Fairness
- Explainability & Privacy
- Practical Ethics

Mobile Manipulation

- Whole-Body Motion
- Long-Horizon Reasoning
- Planning for Sensing

Human-Robot Interaction

- Socially-Compliant Behavior
- Human-Robot Collaboration
- Behavior Adaptation & Safety

Learning Fundamentals

- Socially-Supervised Learning
- Continual & Interactive Learning
- Multimodal & Multitask
 Learning

Many Seminal Works

Scene Understanding

Motion Planning

Simultaneous Localization and Mapping

Learning from Demonstrations

Robotic Perception — Mobility

Unsupervised LiDAR Domain Adaptation Besic, Gosala, Cattaneo, Valada RA-L '22

Semantic Motion Segmentation Vertens, Valada, Burgard ICRA '17

Robotic Perception — Manipulation

Single-Shot Reconstruction

Category and Joint Agnostic Reconstruction of ARTiculated Objects Heppert, et al CVPR '23

Learning scale-invariant compact representations for mobile manipulation

Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation von Hartz, et al RA-L '23

Mapping and Localization

Conversely, B_{general} also recalls the experience from Cityscapes using a replay buffer. The advantage of this approach becomes visible in the subsequent experiment.

Continual SLAM Vödisch, Cattaneo, Burgard, Valada ISSR '22

Continual Depth Estimation and Segmentation Vödisch, Petek, Burgard, Valada RSS '23

III. Topics

Seminar Papers

WayFASTER: a Self-Supervised Traversability Prediction for Increased Navigation Awareness

https://arxiv.org/pdf/2402.00683.pdf

- Predicts terrain traversability from
 RGB-D + GNSS inputs in a BEV map.
- Uses a Receding Horizon Estimator (**RHE**) to estimate the poses and label the data.
- The traversability index depends on whether the actual motion follows the control sent.

NeSLAM: Neural Implicit Mapping and Self-Supervised Feature Tracking With Depth Completion and Denoising

https://arxiv.org/pdf/2403.20034.pdf

- Predicts the ego-motion, denoises the input depth and generates a NeRF map from RGB-D inputs.
- SS in the form of comparing rendered images from the NeRF with the input and tracking keypoints.

Category-Level 6D Object Pose and Size Estimation using Self-Supervised Deep Prior Deformation Networks

https://arxiv.org/pdf/2207.05444.pdf

- Estimates rigid transformation (R, t, s) for an object from an RGB-D scan.
- Takes a shape prior as input in the form of an object's point cloud.
- Combines a supervised loss on a small set of synthetic data and a self-supervised loss comprised of intra- and inter-consistency terms.

Self-Supervised Monocular Depth Estimation From Thermal Images via Adversarial Multi-Spectral Adaptation

<u>OpenAccess</u>

- Thermal images have low contrast and poor features.
- Unsupervised Domain Adaptation from RGB to Thermal.
- Domain-specific encoders (RGB / Thermal).
- Domain-shared decoder.
- SS adversarial feature-level discriminator.
- SS self reconstruction loss.

Supervisor: Niclas Vödisch DINOv2: Learning Robust Visual Features without Supervision

https://arxiv.org/pdf/2304.07193.pdf

(Vehicles)

(Birds / Airplanes)

- Unsupervised **visual foundation model** generating semantically rich image features.
- Powerful visual transformer (ViT) architecture trained on an automatically curated dataset.
- Utilized as **task-agnostic pretraining strategy** for various downstream applications.

Supervisor: Niclas Vödisch

STEGO: Unsupervised Semantic Segmentation by Distilling Feature Correspondences

https://arxiv.org/pdf/2203.08414.pdf

- Semantic segmentation without human annotations inspired by self-supervised feature learning.
- Exploit descriptive image features from visual foundation model.
- Correspondence distillation loss for **contrastive learning** aligning visual features and image segmentation.

Supervisor: Niclas Vödisch

SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance

https://arxiv.org/pdf/2311.16241.pdf

- Efficient semantic segmentation aiming to reduce the amount of human annotations.
- Exploit semantically rich features from frozen visual-language foundation models (VLMs).
- Dense VLM guidance loss to address label inconsistencies between dataset definitions.

Supervisor: Niclas Vödisch

Seal: Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

https://arxiv.org/pdf/2306.09347.pdf

- Exploit semantic predictions from visual foundation models to annotate LiDAR point clouds.
- **Temporal-spatial contrastive learning** between paired LiDAR and camera features.
- **Temporal consistency regularization** between point segments at different timestamps.

Supervisor: Adrian Röfer

Few-Shot In-Context Imitation Learning via Implicit Graph Alignment

https://arxiv.org/pdf/2310.12238.pdf

- Learn to reproduce relative object trajectories
 1-Shot
- Self-supervised learning of feature embedding to track object points
- Embedding allows Zero-Shot transfer to new object instances

Supervisor: Adrian Röfer

You Only Demonstrate Once: Category-Level Manipulation from Single Visual Demonstration

https://arxiv.org/pdf/2201.12716.pdf

- Full robotic system learning from single demonstration and reproducing with other instances
- Learning of categorical representation from synthetic data
- Full 6-DoF tracking of new objects and control for "the last inch"

Supervisor: Adrian Röfer

Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

https://arxiv.org/pdf/2111.00190.pdf

- Category-Level estimation of 6D poses of unseen objects by disentangling pose and shape
- Equivariant-Feature embedding as disentanglement technique
- Technique is label-free, requiring no CAD models or GT pose information

universitätfreiburg

Supervisor: Adrian Röfer USEEK: Unsupervised SE(3)-Equivariant 3D Keypoints for Generalizable Manipulation

https://arxiv.org/pdf/2209.13864.pdf

- Unsupervised learning of category-level keypoints for object manipulation
- Teacher-Student networks to disentangle keypoint detection and equivariance-prediction
- Demonstrate approach's applicability to robotic manipulation with multiple pick-and-place tasks

Supervisor: Jan Ole von Hartz SUGAR: Pre-training 3D Visual Representations for Robotics

https://arxiv.org/pdf/2404.01491.pdf

- 3D pre-training framework leveraging
 - cross-modal knowledge distillation for semantic learning,
 - masked point modeling for geometry understanding,
 - grasping pose synthesis for object affordance,
 - 3D instance segmentation for cluttered scenes.
- Self-supervised training in simulation.
- Evaluate on zero-shot 3D object recognition, referring expression grounding, and language-driven manipulation.

PoCo: Policy Composition from and for Heterogeneous Robot Learning

https://arxiv.org/pdf/2402.02511.pdf

- Use diffusion models to combine
 - multiple modalities (color, depth, tactile, ...),
 - domains (simulation, real robots, human).
- Learns generalizable tool-using policies.

Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers

https://arxiv.org/pdf/2403.12943.pdf

- Infer robot task from human prompt video.
- Then predict action sequence to solve task.
- Trained on mixed dataset of robot-robot und human-robot video pairs.

Robot observes human doing a task.

Vid2Robot outputs actions to complete shown task in its own environment.

Initial State

Policy Rollout Video

3D Diffusion Policy: Generalizable Visuomotor Policy Learning via Simple 3D Representations

https://arxiv.org/pdf/2403.03954.pdf

- Point encoder extracting a compact 3D representation from sparse point clouds.
- Used to learn tasks from just 10 demos.

Hierarchical Policy Blending As Optimal Transport

https://arxiv.org/pdf/2212.01938.pdf

- High-level look-ahead planner that blends a set of low-level, reactive Riemannian motion policies via optimal transport.
- Eg. combine goal-reaching (green box) with obstacle avoidance (red blobs).
- Danger: lots of math ahead!

? Questions

Announcement Open Positions

• We have open positions for a **HiWi**, good opportunity to work on practical robotics and get to know the lab.

• We have multiple **MSc Project** and **Thesis** topics related to many directions of robot learning.

Please check our website for information on how to apply:

https://rl.uni-freiburg.de/open-positions

Questions or Comments

José Arce Robot Learning Lab arceyd@cs.uni-freiburg.de