universitätfreiburg

Giving a Presentation

Akshay L Chandra

Slides originally from Wolfram Burgard

Robot Learning Lab

27 June 2025

With Every Presentation ...

.... you present yourself and your work

Agenda

- The Slides
 - Content
 - Layout

The Presentation

The Slides

The Slides

- Typically done long before the presentation
- And long enough to practice
- They are used to better convey the message

 Their purpose is not to allow you to read off what you want to say

Many Scientific Presentations have Similar Outlines

- 1. Introduction and Motivation
- 2. State of the Art
- 3. Our Approach
- 4. Results
- 5. Conclusions and Future Work

- This or a similar slide exists in many presentations
- Maybe it is better to leave it out if your presentation is short.

Introduction and Motivation

Describe

- the problem
- why it is relevant
- the open question
- in which way your approach provides an answer to this question

Why should people care about your work?

State of the Art

- Mention relevant approaches presented in the past.
- Explain in which way the approach presented in this paper goes beyond the previous ones.
- The art lies in finding the right balance between achievements and limitations
- Explain what the approaches do and what they solve (make the authors happy)
- Explain in which way your approach is better (without making the authors of previous work unhappy)

The Approach

- This part of the presentation is not intended to demonstrate your skills
- It is intended to let the audience understand how your approach works
- Provide the audience with the technical details and the intuition
- Use graphics and/or examples to explain technical details

Algorithms are Hard to Understand

```
Algorithm 1 Coverage(S)
1: C \leftarrow S //Set the current node to S
     \mathcal{P}_{aux} \leftarrow C
 3: P ← Ø
 4: while 1
            \forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| < M_{\mathbf{R}} \cdot e_{\text{cell}}
5:
                 visited(m) = 1
            \forall n \in \mathcal{P}_{aux}, \ m \in \mathcal{N}, \ \|c_n - c_m\| < 2M_{\mathbf{R}} \cdot e_{\text{cell}}
6:
                 overlapped(m) = 1
            \mathcal{N}_C \leftarrow \{n \in \mathcal{N} \mid ||c_n - c_C||_{\infty} = (2M_R + 1) \cdot e_{\text{cell}}\}
7:
                 and overlapped(n) = 0 and g(n) < \infty
8:
            if \mathcal{N}_C \neq \emptyset
                 find M \in \mathcal{N}_C with minimal q
9:
10:
            else
11:
                 D^{*}(C) and stop at visited(M) = 0
                      or ||c_M - c_o||_{\infty} = e_{\text{cell}}, \ o \in \mathcal{O} \text{ and } \exists n,
                      visited(n) = 0, ||c_M - c_n|| < M_R \cdot e_{cell}
                 if no such node M exists
12:
13:
                      return \mathcal{P}
14:
                 end
15:
            end
16:
            \mathcal{P}_{aux} \leftarrow \mathcal{P}_{aux}(C, M)
            C \leftarrow M //Set the new current node
18:
            \mathcal{P} \leftarrow \mathcal{P} \cup \mathcal{P}_{aux}
19: end
```

[Dakulovic et al., IFAC 2011]

Better...

- Describe the idea
- Give examples to describe how it works
- Design the examples so that all (relevant) features of the algorithms can be explained
- Provide the audience with the intuition

The Results

- The results should back up your claims
- With them you demonstrate that your approach has the desired features.
- They should also **demonstrate** that the approach you present is **better than previous ones**.

Conclusion and Future Work

- Again, describe the contribution of this paper
- A good first sentence starts with "We presented a novel approach to ..."
- Explain the key idea of the work
- Maybe talk about limitations that might lead to future work

Seminar Talks about Other People's Work

- You might add slides describing your opinion about the paper
- Tell what you regard as positive aspects
- Tell which potential improvements you see
- What would you have done differently?

Text

- Use Arial (Body)
- Use
 - dark text on light background (easy to read)
 - light text on dark background (not so easy to read)

Left-aligned text is easier to read than centered text

Avoid putting too much onto one slide (avoid clutter)

Text

- Use Arial (Body)
- Use
 - dark text on light background (easy to read)
 - light text on dark background (not so easy to read)

Left-aligned text is easier to read than centered text

· Avoid putting too much onto one slide (avoid clutter)

Text Colour

- Check readability
- Check readability
- Check readability
- Check readability
- Red and green are hard to distinguish for a large fraction of the population

Check readability, maybe ask others!

Text Size

- Make sure that everyone can read the text (32Pt)
- Make sure that everyone can read the text (28Pt)
- Make sure that everyone can read the text (24Pt)
- Make sure that everyone can read the text (20Pt)
- Make sure that everyone can read the text (18 Pt)
- Make sure that everyone can read the text (16 Pt)
- Make sure that everyone can read the text (14 Pt)
- Make sure that everyone can read the text (12 Pt)
- The caption should not be smaller than the text on the slide

Abbreviations

- Abbreviations might reduce the length of your presentation but might make it harder to understand
- They make you appear like an insider while they likely make others feel like outsiders

- Avoid abbreviations (unless they are very, very common)
- Especially avoid uncommon abbreviations in titles

Images

- Prefer vector graphics over images
- When grabbing an image from the source paper, make sure you do this at the highest resolution
- Enlarge the picture as much as possible before grabbing it
- If you can see the individual pixels, consider redrawing the figure!
- To check, attach your computer to an LCD monitor and check the quality by going close to the screen.

A Low Resolution Image

A High Resolution Image

Plots

- Use colors that can easily be distinguished
- Use patterns that can easily be distinguished
- Order the legend according to the functions
- Make them high resolution
- Create your own one if needed

Negative Example Plot

Properly use Line Styles, Colors and Alignments

Properly use Line Styles, Colors and Alignments

Properly use Line Styles, Colors and Alignments

Animations

- Useful for explaining content
- Or illustrating processes

- And not to entertain the audience
- Avoid line after line text-animations
- Often animations are even distracting
- Avoid demonstrating that you know every feature of the presentation tool!

Spell Czeching

- Your computer can do spell checking for you: Use it!
- Always set the language of the slide to the language that you are using

Juice thee sbell chekker!

Slide Numbers

- Help orienting
- Help referencing to specific slides, particularly for posing questions

- They might indicate hidden slides
- Some run in animations, some not, depending on the type of animation

If it helps you, use them

Slide Numbers

In seminars held at the university, it is better to use them

 In scientific presentations, everything not relevant to the content might be distracting.

Bullets / Numbering

Only use indentations/numbering levels with multiple bullets **Example:**

- 1. This looks fine
 - With multiple
 - Bullets
- 2. On every level

Bullets / Numbering

Only use indentations/numbering levels with multiple bullets **Example:**

- 1. This is still fine with 2.
 - These levels
 - Do not
 - Look so nice
- 2. This is still fine with 1.

Important Aspects to Check

- Set the language of the slides to the language of the presentation
- Spell check your slides (press F7)
- Check whether your videos run on the computer used for the presentation
- And when this computer is attached to the presentation display
- Friendly video codecs are
 - MP4 with H.264 standard settings or
 - MS RLE encoding for animations

Choose a Proper Aspect Ratio

- Nowadays data projectors have different projection formats
- Typical resolutions are 4:3, 16:9, 720p, 1080p, ...
- If you present on a TV set, the fonts can easily be too small
- Check the aspect ratio before you start preparing your presentation
- Changing it on the fly (before the talk) might lead to severe formatting problems

The Presentation

Your Presentation

- Plan it
- Practice it
- Time it
- Think about how to deal with interrupting questions
- Practice transitions between slides

Keep in mind: This is your show. Optimize it!

Connecting Your Laptop

- Check whether your laptop works (before the talk)
- Are the colours OK?
- Are the videos visible on both screens?
- Avoid booting your computer in front of the audience
- Check the entire presentation (esp. videos and fonts when you must present on a computer different from yours)

The Presentation Mode

The Presentation Mode Is A Great Tool

It allows you to

- put aspects you want to convey or an introductory sentence into the notes of each slide
- check where you should be according to the timing
- make a proper transition to the next slide.

Position the computer so that you can see its screen and read the notes

Laser Pointer

- Might help you to point at content
- or to emphasize aspects
- Hold the laser pointer in both hands if the laser point jitters
- Not everything needs to be pointed at
- Do not point at the audience
- Start and stop the laser properly
- Familiarize yourself with the buttons
- and the other features (timer)

Laser Pointer Gestures

Underline

Point at

Speaking (1)

- Speak up to make sure that everyone can hear you
- If there is a microphone, speak into it!
- Do not lower your voice simply because there is a microphone
- If you can hear your voice from the speakers, the audience does as well
- If you cannot hear it, the audience will probably also not be able to hear it (and you)

Speaking (2)

- Avoid dialect and idioms
- Avoid quotations that are not publicly known
- Avoid repetitions (look for alternatives or synonyms if you discover it)
- Avoid hesitation vowels like "ahem", "uh", "well", "yes", "OK",
 ...

Make Sure People Can See You

Make Sure People Can See You

How to Move and Behave?

- Establish contact to the audience
- Do not solely focus the computer screen or the screen
- Do not look at the ground or into a corner
- Avoid siding (try to look at everyone)
- Do not hide yourself behind the lectern
- Do not stare at the screen
- Do not simply read off the slides
- Do not put your hands into your pockets

How to Dress?

- People are there to hear your material
- When you dress up you send the message that you care enough about the audience
- My experience is that it is better to feel overdressed rather than underdressed
- Do not wear something really wacky
- Ask your advisor!

Questions / Interruptions?

- Think positive!
- Questions are good and show that people are interested
- Try to repeat the question to make clear that you understood it properly
- If you cannot answer a question, be honest about it and do not say random words
- If answering would take too long or would go too far away from the talk, suggest to take the discussion offline
- Do not worry when someone falls asleep

Summary

- A talk is a unique opportunity to present yourself and your work
- Prepare it carefully
- Practice it extensively
- Avoid being late with your presentation
- Avoid not to be unprepared

Thank you for your attention!

This slide appears in almost every talk but actually, is superfluous.

Akshay L Chandra
Robot Learning Lab
chandra@cs.uni-freiburg.de

Thank you for your attention!

Akshay L Chandra
Robot Learning Lab
chandra@cs.uni-freiburg.de

