You are here: Home Teaching WS 2023/24 Foundations of Deep Learning

Foundations of Deep Learning

Deep learning is one of the fastest growing and most exciting fields. This course will provide you with a clear understanding of the fundamentals of deep learning including the foundations to neural network architectures and learning techniques, and everything in between.

Details

Time: Monday, 14:15 – 15:45
First meeting on October 16th 2023.
Location: Weekly flipped classroom sessions will be held on Monday at HS 00 026 µ - SAAL (G.-Köhler-Allee 101). Optional exercise sessions will take place on Friday 10:15-11:45 at HS 00 006 (G.-Köhler-Allee 082)
Learning Platform: ILIAS

Course Overview

The course will be taught in English and will follow a flipped classroom approach.

Every week there will be:
- a video lecture
- an exercise sheet
- a flipped classroom session (Mondays 14:15-15:45)
- an attendance optional exercise session (in-class/offline, Fridays 10:15 - 11:45)

At the end, there will be a written exam (likely ILIAS test).

Exercises must be completed in groups and must be submitted a week (+ 1 day) after their release. Your submissions will be graded and you will receive weekly feedback. Your final grade will be solely based on a written examination, however, a passing grade for the exercises is a prerequisite for passing the course.

All material will be made available in ILIAS and course participation will not require in-person presence. That being said, we offer ample opportunity for direct interaction with the professors during live Q & A sessions (HS 00 026 µ - SAAL, G.-Köhler-Allee 101) and with our tutors during weekly attendance optional in-class exercise sessions (HS 00-006, G.-Köhler-Allee 082).
Exam: The exam will likely be a test you complete on ILIAS. In-person presence may be required (TBA).

Course Schedule

The following are the dates for the flipped classroom sessions:

16.10.23 – Kickoff: Info Course Organisation / Team Formation
23.10.23 – ChatGPT Panel Discussion
30.10.23 – Week 1: Intro to Deep Learning
06.11.23 – Week 2: From Logistic Regression to MLPs
13.11.23 – Week 3: Backpropagation
20.11.23 – Week 4: Optimization
27.11.23 – Week 5: Regularization
04.12.23 – Week 6: Convolutional Neural Networks (CNNs)
11.12.23 – Week 7: Recurrent Neural Networks (RNNs)
18.12.23 – Week 8: Attention & Transformers
08.01.24 – Week 9: Practical Methodology
15.01.24 – Week 10: Auto - Encoders, Variational Auto - Encoders, GANs
22.01.24 – Week 11: Uncertainty in Deep Learning
29.01.24 – Week 12: AutoML for DL
05.02.24 – Round-up / Exam Q & A

The course material (lecture video, slides, exercise sheet) for “Week N” will be made available a week before the flipped classroom session for “Week N”. For example, the material for Week 1 will be available on 16.10.23, and solutions to the exercises must be submitted latest 31.10.23 at 23:59. Virtual participation in flipped classroom sessions will be enabled using Zoom and the meeting link can be found on ILIAS in the "Flipped Classroom" folder.

In the first session (on 16.10.23) you will get additional information about the course and get the opportunity to ask general questions (and form groups!) While there is no need to prepare for this first session, we encourage you to already think about forming teams. The last flipped classroom session is held on 05.02.24.

Questions?

If you have a question, please post it in the ILIAS forum (so everyone can benefit from the answer). Alternatively, you can also email dl-orga-ws23@cs.uni-freiburg.de